# Aquatic Vegetation Management Plan for Lake Hood and Lake Spenard





# **Aquatic Vegetation**



# There are Four Categories of Aquatic Vegetation

- Emergent (bulrush)
- Free-floating (duckweed)
- Rooted with floating leaves (water lilies)
- Submersed (milfoil)

# **Most Common Species Found in Lakes Hood and Spenard**

- Spikerush Erosion control
- Bulrush Erosion control
- Pondweed Problematic for floatplanes
- Milfoil Problematic for floatplanes





# Why is Aquatic Vegetation

#### **Problematic?**

- Vegetation can get caught on the rudders and floats of planes
- Could affect floatplane operations
- Plant debris accumulates around slip docks
- Could limit aesthetic appeal at public beach
- Bad odor could be a nuisance for slip owners and recreational users



# **Aquatic Vegetation in Lakes Hood and Spenard**

- Water clarity has been improving over the past few years due to storm water pollution prevention measures (diversions, GRVs, potassium acetate)
- Specifically:
  - Urea loading may relate directly or indirectly to water clarity
  - More light can penetrate through clearer water, which usually results in increased aquatic vegetation growth





### ANC's Approach

- Proactive approach toward controlling aquatic vegetation
- Consider all management options:
  - Physical/Mechanical
  - Biological
  - Chemical
- Determine most appropriate method(s) with regard to effectiveness, environmental considerations, and cost
- Implement Plan for 5-years, then assess and adjust as necessary

# Physical/Mechanical Techniques



- Hand Pulling, Raking, or Cutting
  - Manually pull, rake, or cut down plants
- Mechanical Harvesters
  - Large machine cuts and harvests vegetation
  - ANC can either purchase harvester, borrow Homer's EH-220 Harvester, or outsource harvesting to local contractor
- Bottom Barriers
  - Large tarp placed on bottom, which blocks sunlight and prevents growth
- Diver dredging, roteration, and water level drawdown

# Where do the Physical Methods Work?



### Many Physical Methods were Eliminated from Consideration

- Bottom barriers eliminated due to cost and potential for becoming dislodged
- Water level drawdown not realistic Lakes need stable water level for floatplane operation
- Rotovation and diver dredging substantially increase water column turbidity and could reduce water quality.

# **Biological Control Techniques**

Biological control is the intentional release of an organism to limit growth of nuisance vegetation

#### Carp

- Non-reproducing fish that feed on aquatic vegetation initial low cost, may denude lake or have little effect



#### - Insects

 Weevils feed and burrow into stems of northern milfoil

# Where do Biological Methods Work?



# **Biological Controls Were Eliminated as Options**

#### Triploid Carp

- Many uncertainties, they can completely denude lake or they can barely make a dent
- Survival in Lakes Hood & Spenard uncertain
- Never permitted in Alaska
- Difficult to permit in Alaska called "a most challenging endeavor" by ADFG biologist

#### Insects

- Survival in Lakes Hood & Spenard uncertain Never permitted in Alaska
- Difficult to permit in Alaska called "a most challenging endeavor" by ADFG biologist

# **Chemical Control Techniques**

Chemical control can be used to kill plant tissue or adversely affect their growth process

#### - Herbicides

- Herbicides retard or eliminate plant growth
- Will require a DEC permit
- Public may not approve
- Are not toxic to fish or wildlife when used properly
- Dead and decaying plants must be removed to prevent nutrients being released and lowering DO

#### - Dye

• Reduces light penetration in water thereby limiting plant growth, may be aesthetically unappealing

### **Aquatic Herbicide Characteristics**

| Herbicide             | Description                                                                                                       | Nuisance<br>Species |          | Beneficial<br>Species |         | Approximate Cost per Acre |
|-----------------------|-------------------------------------------------------------------------------------------------------------------|---------------------|----------|-----------------------|---------|---------------------------|
|                       |                                                                                                                   | Pondweed            | Milfoil  | Spikerush             | Bulrush |                           |
| 2,4-D<br>(Navigate)   | Selective, effective for whole-lake or spot treatments. Half life: 10-50 days.                                    | X                   | X        |                       |         | \$500                     |
| Diquat<br>(Reward)    | Contact, nonselective, binds to sediment and is very persistent, but its half life in water column is 1-7 days.   | X                   | X        | X                     | X       | \$300                     |
| Endothall (Hydrothol) | Water soluble, contact, best for submersed weeds. Half life: 4-7 days.                                            | X                   | X        |                       |         | \$500 to \$800            |
| Fluridone<br>(Sonar)  | Selective, works well for whole-lake treatments, and should not be used in areas <10 acres. Half life: 20-90 days | X                   | X        |                       |         | \$100 to 700              |
| Glyphosate (Rodeo)    | Broad spectrum herbicide that is used to control immersed vegetation.                                             |                     |          | X                     |         | \$250                     |
| Triclopyr             | Selective, low toxicity her inic that is most effective for spot treatment                                        |                     | <u> </u> |                       |         | \$600                     |

# Vegetation Management Scenarios

- 3 Scenarios were devised with varying levels of control and effort by ANC
- 1) ANC would perform all aquatic vegetation management
- 2) Slip owners responsible for their own slips, while ANC would maintain open water
- 3) ANC would not maintain any responsibility for vegetation control, which would be left entirely to slip owners

### Scenario 1 – ANC Does Everything



#### Scenario 2 – ANC and Tenants Share





# Scenario 3 – Tenants take care of slips, ANC does nothing



# Selected Vegetation Management Scenario

• Scenario 2 – ANC is responsible for controlling vegetation in open water; slip owners maintain their own slips with ANC's guidance

# Selected Vegetation Management Scenario

#### • ANC

- During the summer of 2005, ANC will borrow Homer's Harvester when available, and will retain the use of a contractor for no more than 5-days per year.
- ANC will work through the year to purchase and own an aquatic harvester that will be ready for use in the summer of 2006.

#### Tenants

 Will rake and remove vegetation using the Airport's rakes or purchase of their own. ANC will offer assistance when required.

### **Aquarius Vegetation Harvesters**

- EH-220 can 0.30 acres per hour; 5-ft. cutter width, 3,200 lbs. storage capacity
- HM-320 can cover 0.37 acres per hour; 6-ft. cutter width, 7,025 lbs. storage capacity
- HM-420 can cover 0.43 acres per hour; 7-ft. cutter width, 10,500 lbs. storage capacity
- Shore conveyor costs \$20,500
- Trailer costs \$7,875 for EH-220 and \$9,450 for HM-320 and 420



# Selected Control Options: 5-Year Present Worth Costs

| ANC                                                              |           |  |  |  |
|------------------------------------------------------------------|-----------|--|--|--|
| Borrow Homer's EH-220<br>Vegetation Harvester for<br>Summer 2005 | \$40,065  |  |  |  |
| Contracted Harvester, 5-days per year during Summer 2005         | \$11,000  |  |  |  |
| Purchase Harvester for use starting in 2006                      | \$254,285 |  |  |  |
| Individual Slip Owners                                           |           |  |  |  |
| Weed Rakes                                                       | \$366     |  |  |  |

# Final Aquatic Vegetation Management Plan

Annual Capital and O&M Costs over 5-Year Implementation Schedule





# **Questions?**

